Greenhouse Gas Inventorying and Mitigation at Penn State University

Rob Neff
Department of Geography
Penn State University

Introduction

- Research Context for Campus-Level Work
- Environmental Context for GHG Work
- GHG Inventory
 - >1997
 - >1990 & Current
- Mitigation
 - Current Efforts
 - > Future Directions

Research Context

- Center for Integrated Regional Assessment (CIRA) GHG Initiative
 - Cross-scale GHG inventories and mitigation action plans
- Human-Environment Regional Observatories (HERO)
 - Develop infrastructure
 - Protocols
 - Cross-site collaboration
 - "Meta-Protocols"
 - Collaboratory

Penn State Environmental Context

- Environmental Stewardship
- The responsibility of Penn State to manage its operations with proper regard to environmental consequences and to the rights of others
- Moving toward environmentally sustainable behavior
- Current focus on no-regrets and/or lowcost

Strategy Focus Areas

- Purchasing
- Conserve energy and water
- Minimize solid waste
- Minimize toxic material use and hazardous waste
- Planning and design
- Regulatory compliance

GHG Inventories

- 1997 inventory completed during GCLP project by Steve Lachman
- Approached by Office of Physical Plant to do 1990 and 2000
 - ➤ Inform mitigation action plan
 - Contextualize ongoing efforts to reduce emissions

1997 GHG Emissions

1997 Energy Emissions

1990 & Current Inventory

Q: Why do local Inventories?

A: To inform mitigation action plans

- Three approaches:
 - Geographically based
 - Consumption based
 - Agency based
- Agency based approach
 - > Informs mitigation action plans
 - Requires very specific local data

1990 & Current Inventory

Point Sources

- **Buildings**
- ➤ Other Facilities
- Energy Generation

Transportation

- Previous inventory based on regional average commute
- Specific data available for all parking permit holders

Mitigation Efforts

- Current Efforts
 - Energy
 - >Transportation
- Future Directions

Energy Mitigation Efforts

- Energy efficiency
 - **Buildings**
 - Recommissioning
 - Total costs \$780,000
 - Annual savings \$219,000
 - Simple payback 3.61 years
 - Commissioning new buildings
 - ASHRAE Standards
 - >Water
 - Water savings
 - Also reduces sewage

Energy Mitigation Efforts

Green Energy

- ➤ 5% of electricity from wind power (through offsets)
- >\$0.014/kWh premium for wind power
- ➤ Annual purchased electric costs \$18,807,000
- Cost of wind power \$246,400
- **▶**1.3% of cost

Energy Star Purchasing

- Most electronic equipment is already energy star rated so there is no price differential
- Financial incentive
 - Purchased 930 refrigerators/microwaves
 - Low bid \$344 cheaper but not Energy Star rated.
 - Buying second bidder's Energy Star rated equipment would save \$6273 a year in electricity
 - Bought the Energy Star product
- Computers
 - More LCD Screens
 - Activate Energy Star Features

Energy Consumption

Average Energy Consumption

University Park

Transportation Mitigation Efforts

Bus Passes

- Must surrender parking pass
- Small number of one-day passes permitted
- Reduce demand for parking, minimize new lot construction

Free Ridership

- Campus and Town Loops, Link Service
- Possibility of free ridership on entire system, but complicated

Future Directions

- Develop mitigation action plan specifically for GHGs based on inventories
- Promote alternative energy sources
 - New wind turbine development
 - > Fuel-cell development
- Buildings
- Must be cost-effective